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1. Introduction
Throughout this paper A, B are positive invertible operators on a complex

Hilbert space (H, ⟨·, ·⟩) . We use the following notations for operators and
ν ∈ [0, 1]

A∇νB := (1− ν)A+ νB,

the weighted operator arithmetic mean, and

A♯νB := A1/2
(
A−1/2BA−1/2

)ν
A1/2,

the weighted operator geometric mean [14]. When ν = 1
2 we write A∇B and

A♯B for brevity, respectively.
Define the Heinz operator mean by

Hν (A,B) :=
1

2
(A♯νB +A♯1−νB) .

The following interpolatory inequality is obvious
(1.1) A♯B ≤ Hν (A,B) ≤ A∇B

for any ν ∈ [0, 1].
We recall that Specht’s ratio is defined by [16]

(1.2) S (h) :=


h

1
h−1

e ln

(
h

1
h−1

) if h ∈ (0, 1) ∪ (1,∞) ,

1 if h = 1.
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It is well known that limh→1 S (h) = 1, S (h) = S
(
1
h

)
> 1 for h > 0, h ̸= 1.

The function is decreasing on (0, 1) and increasing on (1,∞) .
The following result provides an upper and lower bound for the Heinz

mean in terms of the operator geometric mean A♯B :
Theorem 1.1 (Dragomir, 2015 [6]). Assume that A, B are positive invertible
operators and the constants M > m > 0 are such that
(1.3) mA ≤ B ≤ MA.

Then we have
(1.4) ων (m,M)A♯B ≤ Hν (A,B) ≤ Ων (m,M)A♯B,

where

(1.5) Ων (m,M) :=


S
(
m|2ν−1|) if M < 1,

max
{
S
(
m|2ν−1|) , S (M |2ν−1|)} if m ≤ 1 ≤ M,

S
(
M |2ν−1|) if 1 < m

and

(1.6) ων (m,M) :=



S
(
M |ν− 1

2 |
)

if M < 1,

1 if m ≤ 1 ≤ M,

S
(
m|ν− 1

2 |
)

if 1 < m,

where ν ∈ [0, 1].

We consider the Kantorovich’s constant defined by

(1.7) K (h) :=
(h+ 1)2

4h
, h > 0.

The function K is decreasing on (0, 1) and increasing on [1,∞) , K (h) ≥ 1
for any h > 0 and K (h) = K

(
1
h

)
for any h > 0.

We have:

Theorem 1.2 (Dragomir, 2015 [7]). Assume that A, B are positive invertible
operators and the constants M > m > 0 are such that the condition (1.3) is
valid. Then for any ν ∈ [0, 1] we have
(1.8) (A♯B ≤)Hν (A,B) ≤ exp [Θν (m,M)− 1]A♯B

where

(1.9) Θν (m,M) :=


K
(
m|2ν−1|) if M < 1,

max
{
K
(
m|2ν−1|) ,K (M |2ν−1|)} if m ≤ 1 ≤ M,

K
(
M |2ν−1|) if 1 < m
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and

(1.10) (0 ≤)Hν (A,B)−A♯B ≤ 1

4m1−ν
max

x∈[m,M ]
D
(
x2ν−1

)
A,

where the function D : (0,∞) → [0,∞) is defined by D (x) = (x− 1) lnx.

The following bounds for the Heinz mean Hν (A,B) in terms of A∇B are
also valid:

Theorem 1.3 (Dragomir, 2015 [7]). With the assumptions of Theorem 2.2
we have
(1.11) (0 ≤)A∇B −Hν (A,B) ≤ ν (1− ν)Υ (m,M)A,

where

(1.12) Υ(m,M) :=


(m− 1) lnm if M < 1,

max {(m− 1) lnm, (M − 1) lnM} if m ≤ 1 ≤ M,

(M − 1) lnM if 1 < m

and
(1.13) A∇B exp [−4ν (1− ν) (𝟋 (m,M)− 1)] ≤ Hν (A,B) (≤ A∇B)

where

(1.14) 𝟋 (m,M) :=


K (m) if M < 1,

max {K (m) ,K (M)} if m ≤ 1 ≤ M,

K (M) if 1 < m.

For other recent results on operator geometric mean inequalities, see [2]-
[13], [15] and [17]-[18].

Motivated by the above results, we establish in this paper some multi-
plicative inequalities providing bounds for Hν (A,B) in terms of A♯B and
A∇B under various assumptions for positive invertible operators A, B.

2. Bounds for Hν (A,B) in Terms of A♯B

For ν ∈ (0, 1)\
{
1
2

}
we consider the following function dν : (0,∞) → [1,∞)

defined by

(2.1) dν (x) =
xν + x1−ν

2
√
x

.

The properties of this function are collected in the following lemma.

Lemma 2.1. For any ν ∈ (0, 1) \
{
1
2

}
we have that limx→0+ dν (x) =

limx→∞ dν (x) = ∞, the function is decreasing on (0, 1), increasing on
(1,∞) , dν (1) = 1 and dν

(
1
x

)
= dν (x) for any x ∈ (0,∞) .
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Proof. We have

dν (x) =
xν + x1−ν

2
√
x

=
1

2

(
xν−

1
2 + x

1
2
−ν
)

for any x ∈ (0,∞) and any ν ∈ (0, 1) \
{
1
2

}
.

By taking the derivative we have

d′ν (x) =
1

2

((
ν − 1

2

)
xν−

3
2 +

(
1

2
− ν

)
x−ν− 1

2

)
=

1

2

(
ν − 1

2

)(
xν−

3
2 − x−ν− 1

2

)
=

1

2

(
ν − 1

2

)
x−ν− 1

2
(
x2ν−1 − 1

)
for any x ∈ (0,∞) and any ν ∈ (0, 1) \

{
1
2

}
.

If ν > 1
2 then x2ν−1−1 is negative for x ∈ (0, 1) and positive for x ∈ (1,∞)

giving that d′ν (x) is negative for x ∈ (0, 1) and positive for x ∈ (1,∞) .
If ν < 1

2 then x2ν−1−1 is positive for x ∈ (0, 1) and negative for x ∈ (1,∞)
giving that d′ν (x) is negative for x ∈ (0, 1) and positive for x ∈ (1,∞) .

These imply that dν is decreasing on (0, 1) and increasing on (1,∞) . The
rest is obvious. □

Theorem 2.2. Let A, B be positive invertible operators and the constants
M > m > 0 such that

(2.2) mA ≤ B ≤ MA.

If for ν ∈ (0, 1) \
{
1
2

}
we define

(2.3) Λν (m,M) :=



mν+m1−ν

2
√
m

if M < 1,

max
{

mν+m1−ν

2
√
m

, M
ν+M1−ν

2
√
M

}
if m ≤ 1 ≤ M,

Mν+M1−ν

2
√
M

if 1 < m

and

(2.4) λν (m,M) :=



Mν+M1−ν

2
√
M

if M < 1,

1 if m ≤ 1 ≤ M,

mν+m1−ν

2
√
m

if 1 < m,

then we have the double inequality

(2.5) λν (m,M)A♯B ≤ Hν (A,B) ≤ Λν (m,M)A♯B,

for ν ∈ (0, 1) \
{
1
2

}
.
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Proof. By the properties of function dν we have
dν (M) if M < 1,

1 if m ≤ 1 ≤ M,

dν (m) if 1 < m,

≤ xν + x1−ν

2
√
x

≤


dν (m) if M < 1,

max {dν (m) , dν (M)} if m ≤ 1 ≤ M,

dν (M) if 1 < m

for any x ∈ [m,M ] and any ν ∈ (0, 1) \
{
1
2

}
.

This is equivalent to

(2.6) λν (m,M)
√
x ≤ xν + x1−ν

2
≤ Λν (m,M)

√
x

for any x ∈ [m,M ] and any ν ∈ (0, 1) \
{
1
2

}
.

Using the continuous functional calculus, we have for any operator X with
mI ≤ X ≤ MI that

(2.7) λν (m,M)X1/2 ≤ Xν +X1−ν

2
≤ Λν (m,M)X1/2

for any ν ∈ (0, 1) \
{
1
2

}
.

Now, if we multiply both sides of (2.2) by A−1/2 we have mI ≤ A−1/2BA−1/2 ≤
MI and by writing the inequality (2.7) for X = A−1/2BA−1/2 we get

λν (m,M)
(
A−1/2BA−1/2

)1/2
≤
(
A−1/2BA−1/2

)ν
+
(
A−1/2BA−1/2

)1−ν

2

(2.8)

≤ Λν (m,M)
(
A−1/2BA−1/2

)1/2
for any ν ∈ (0, 1) \

{
1
2

}
.

Finally, if we multiply both sides of (2.8) by A1/2, then we get the desired
result (2.5). □

Corollary 2.3. Let A, B be two positive operators. For positive real numbers
m, m′, M, M ′, put h := M

m , h′ := M ′

m′ and let ν ∈ (0, 1) \
{
1
2

}
. If either of

the following conditions
(i) If 0 < mI ≤ A ≤ m′I < M ′I ≤ B ≤ MI,
(ii) If 0 < mI ≤ B ≤ m′I < M ′I ≤ A ≤ MI,

hold, then

(2.9) (h′)ν + (h′)1−ν

2
√
h′

A♯B ≤ Hν (A,B) ≤ hν + h1−ν

2
√
h

A♯B.
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Proof. If the condition (i) is valid, then we have

I < h′I =
M ′

m′ I ≤ A−1/2BA−1/2 ≤ M

m
I = hI,

which implies, by (2.5) that
dν
(
h′
)
A♯B ≤ Hν (A,B) ≤ dν (h)A♯B

and the inequality (2.9) is proved.
If the condition (ii) is valid, then we have

0 <
1

h
I ≤ A−1/2BA−1/2 ≤ 1

h′
I < I,

which, by (2.5) gives

dν

(
1

h′

)
A♯B ≤ Hν (A,B) ≤ dν

(
1

h

)
A♯B.

Since
dν

(
1

h′

)
= dν

(
h′
)

and dν

(
1

h

)
= dν (h) ,

then the inequality (2.9) is also valid. □

3. Bounds for Hν (A,B) in Terms of A∇B

We introduce the function cν : (0,∞) → [1,∞) defined by

(3.1) cν (x) =
x+ 1

xν + x1−ν
,

where ν ∈ (0, 1) \
{
1
2

}
.

The properties of this function are as follows:

Lemma 3.1. For any ν ∈ (0, 1) \
{
1
2

}
we have that limx→0+ cν (x) =

limx→∞ cν (x) = ∞, the function is decreasing on (0, 1), increasing on
(1,∞) , cν (1) = 1 and cν

(
1
x

)
= cν (x) for any x ∈ (0,∞) .

Proof. Taking the derivative of cν , we have

c′ν (x) =
(x+ 1)′

(
xν + x1−ν

)
− (x+ 1)

(
xν + x1−ν

)′
(xν + x1−ν)2

=
xν + x1−ν − (x+ 1)

(
νxν−1 + (1− ν)x−ν

)
(xν + x1−ν)2

=
xν + x1−ν − νxν − (1− ν)x1−ν − νxν−1 − (1− ν)x−ν

(xν + x1−ν)2

=
(1− ν)xν + νx1−ν − νxν−1 − (1− ν)x−ν

(xν + x1−ν)2

=
(1− ν) (xν − x−ν) + ν

(
x1−ν − xν−1

)
(xν + x1−ν)2
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for any x ∈ (0,∞) and ν ∈ (0, 1) \
{
1
2

}
.

Consider the function ℓν : (0,∞) → R defined by

ℓν (x) := (1− ν)
(
xν − x−ν

)
+ ν

(
x1−ν − xν−1

)
= (1− ν)

(
xν − 1

xν

)
+ ν

(
x1−ν − 1

x1−ν

)
= (1− ν)

(
x2ν − 1

xν

)
+ ν

(
x2(1−ν) − 1

x1−ν

)
.

We also have

ℓ′ν (x) = (1− ν)
(
νxν−1 + νx−ν−1

)
+ ν

(
(1− ν)x−ν + (1− ν)xν−2

)
= (1− ν) ν

(
xν−1 + x−ν−1 + x−ν + xν−2

)
for any x ∈ (0,∞) and ν ∈ (0, 1) \

{
1
2

}
.

Since ℓ′ν (x) > 0 for any x ∈ (0,∞) and ν ∈ (0, 1) \
{
1
2

}
it follows that

the equation ℓν (x) = 0 has a unique solution on (0,∞) , namely x = 1 and
ℓ′ν (x) < 0 for x ∈ (0, 1) and ℓ′ν (x) > 0 for x ∈ (1,∞) .

These show that the function cν is decreasing on (0, 1) and increasing on
(1,∞) .

The rest of properties are obvious. □

We have:

Theorem 3.2. Let A, B be positive invertible operators and the constants
M > m > 0 such that the condition (2.2) holds. If for ν ∈ (0, 1) \

{
1
2

}
we

define

(3.2) Φν (m,M) :=



Mν+M1−ν

M+1 if M < 1,

1 if m ≤ 1 ≤ M,

mν+m1−ν

m+1 if 1 < m,

and

(3.3) ϕν (m,M) :=



mν+m1−ν

m+1 if M < 1,

min
{

mν+m1−ν

m+1 , M
ν+M1−ν

M+1

}
if m ≤ 1 ≤ M,

Mν+M1−ν

M+1 if 1 < m,

then we have the double inequality

(3.4) ϕν (m,M)A∇B ≤ Hν (A,B) ≤ Φν (m,M)A∇B,

for ν ∈ (0, 1) \
{
1
2

}
.
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Proof. From Lemma 3.1 we have

M+1
Mν+M1−ν if M < 1,

1 if m ≤ 1 ≤ M,

m+1
mν+m1−ν if 1 < m,

≤ x+ 1

xν + x1−ν

≤



m+1
mν+m1−ν if M < 1,

max
{

m+1
mν+m1−ν ,

M+1
Mν+M1−ν

}
if m ≤ 1 ≤ M,

M+1
Mν+M1−ν if 1 < m,

which implies that

x+ 1

2
×



mν+m1−ν

m+1 if M < 1,

min
{

mν+m1−ν

m+1 , M
ν+M1−ν

M+1

}
if m ≤ 1 ≤ M,

Mν+M1−ν

M+1 if 1 < m

≤ xν + x1−ν

2

≤ x+ 1

2
×



Mν+M1−ν

M+1 if M < 1,

1 if m ≤ 1 ≤ M,

mν+m1−ν

m+1 if 1 < m,

namely

ϕν (m,M)
x+ 1

2
≤ xν + x1−ν

2
≤ Φν (m,M)

x+ 1

2

for any x ∈ (0,∞) and ν ∈ (0, 1) \
{
1
2

}
.

Using the continuous functional calculus, we have for any operator X with
mI ≤ X ≤ MI that

(3.5) ϕν (m,M)
X + I

2
≤ Xν +X1−ν

2
≤ Φν (m,M)

X + I

2

for any ν ∈ (0, 1) \
{
1
2

}
.
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Now, if we multiply both sides of (2.2) by A−1/2 we have mI ≤ A−1/2BA−1/2 ≤
MI and by writing the inequality (3.5) for X = A−1/2BA−1/2 we get

ϕν (m,M)
A−1/2BA−1/2 + I

2
≤
(
A−1/2BA−1/2

)ν
+
(
A−1/2BA−1/2

)1−ν

2

(3.6)

≤ Φν (m,M)
A−1/2BA−1/2 + I

2

for any ν ∈ (0, 1) \
{
1
2

}
.

Finally, if we multiply both sides of (3.6) with A1/2, then we get the
desired result (3.4). □

Finally, we have:

Corollary 3.3. Let A, B be two positive operators. For positive real numbers
m, m′, M, M ′, put h := M

m , h′ := M ′

m′ and let ν ∈ (0, 1) \
{
1
2

}
. If either of

the following conditions
(i) If 0 < mI ≤ A ≤ m′I < M ′I ≤ B ≤ MI,
(ii) If 0 < mI ≤ B ≤ m′I < M ′I ≤ A ≤ MI,

hold, then

(3.7) hν + h1−ν

h+ 1
A∇B ≤ Hν (A,B) ≤ (h′)ν + (h′)1−ν

h′ + 1
A∇B.
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